
ENERGETIC MATERIAL SIMULATIONS: ADVANCING THE FUTURE FORCE

William D. Mattson* and Betsy M. Rice
U. S. Army Research Laboratory, AMSRD-ARL-WM-BD

Aberdeen Proving Ground, MD 21005-5069

ABSTRACT

We describe a new extensible software system to
perform molecular simulations of energetic materials. A
new approach for extensible software development based
on an XML description of a program structure and a set of
components stored in shared object libraries is described
first. A specific example of molecular dynamics
simulations for energetic materials is given next and this
is finally expanded with the capability to perform
molecular packing calculations to show the extensibility
and applicability of the system.

1. INTRODUCTION

Advanced Energetic Materials (AEM) represents a
technology area of enormous importance to the DOD.
AEM are required to enable high priority military
missions ranging from Hard and Deeply Buried Target
Defeat, to Advanced Propulsion, to lightened highly
mobile force evolution and the thrust towards
miniaturized munitions and systems. It is recognized that
weapons superiority is dependent on the development of
AEM. Unfortunately, the current national AEM
investment is sub-critical. It is the consensus of the US
technology community that energetics technology is an
area where we have been surprised by foreign
achievements in the past and, given the vastly larger
investment in these key technologies by foreign nations,
are highly vulnerable in the field in the future. Overseen
by the Office of the Under Secretary of Defense (Science
and Technology) and the Office of Munitions, the
National Advanced Energetics Initiative (NAEI) has been
charted. The NAEI recognizes that developments in
computational chemistry and physics-based modeling
using High-Performance Computing, chemical synthesis
and formulation, and materials science are providing the
key factors that will provide breakthroughs in the
performance of energetic materials. The DOD HPC
network and advanced modeling science and technologies
afford a critical means to rapidly close the technology gap
and expedite the design and development of new
revolutionary AEM.

Our contribution to the design and development of
AEM has been to establish a computational framework
that will allow easy integration of evolving software
required to support the modeling needs of the Army, with

rapid turnaround. The paper describes a generative
programming approach [1] to produce a suite of efficient,
user-friendly, highly scalable molecular simulation codes
to study reactive and non-reactive processes in energetic
materials. The core of this approach is a simulation
generator that assembles and runs simulations described
in eXtensible Markup Language (XML) from a set of
components in shared object libraries. The complete set
of standard molecular simulation components can be
combined in any fashion creating typical simulations and
providing unanticipated functionality. This flexible
software can be extended without modifying or
recompiling the existing code by adding shared object
libraries with the new desired functionality. This
extensibility allows the code to adapt to the changing
needs within the Army while providing the world class
computational performance needed for energetic materials
research, creating a focal point for the integration of
emerging science and high performance computing.

The first software suite integrated into this package,
which was supported by the DOD High Performance
Computing Modernization Program CHSSI project CCM-
5, allows multi-million atom molecular dynamics
simulations in a variety of thermodynamic ensembles,
including the recently developed uniaxial Hugoniostat
method [2].

The next extension of the package is the integration
of “ab initio crystal prediction” software, supported under
CHSSI MBD-4. This procedure predicts the crystal
structure and density of a solid using only the molecular
structure of a single molecule. This predictive capability
is considered crucial to the design and development
process of AEM, since one of the fundamental properties
required for the initial screening of a candidate energetic
material is its crystalline density. This density provides
estimates of idealized performance in a gun and its
detonation velocity and pressure. Integration of this
computational capability into this extensible framework
will result in the capability to predict properties associated
with performance of an energetic material within a time
span of days, making it a critical screening tool for
candidate materials. The traditional descriptions of the
inter-atomic forces in this method are empirical in nature,
thus limiting the predictive capability. To overcome this
obstacle, we are developing an interface to incorporate
solid-state quantum mechanical software packages,
specifically DOD Planewave [3] (supported through
CHSSI CCM-1). An added benefit to this approach is

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
00 DEC 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Energetic Material Simulations: Advancing The Future Force

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U. S. Army Research Laboratory, AMSRD-ARL-WM-BD Aberdeen
Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2
December 2005 in Orlando, Florida.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

that the integration of the quantum mechanical
descriptions of forces within DOD Planewave can be
easily extended to use in the existing molecular dynamics
component of the package.

2. THE SOFTWARE PARADIGM AND
ENVIRONMENT

The overall goal of this project is to develop a suite
of efficient, easy-to-use, extendible, portable and scalable
molecular simulation tools for simulations of materials of
critical DoD interest. To create an easy to use and
extensible environment, this suite of software, entitled
VisualXMD, relies on graphical user interfaces, and a
standards based execution environment to require only a
minimal knowledge of the details of the underlying
software. At the same time the execution environment is
rich enough to allow the expert to create unique advanced
simulations.

The execution environment consists of three parts.
The first is the language for the description of the
simulations called VisualML. This language is used to
specify the order and hierarchy of the functional
components of the simulation. It can be used to specify a
list of functional components to call in order as well as
specify what functional components are called by other
functional components. The second part is the graphical
user interface that allows the user to visually create the
VisualML describing a specific simulation. The final part
of the execution environment is a program that reads in
the VisualML describing a simulation and calls the
functional components in the proper sequence. This
“Code Executive” also provides an interface to any
simulation parameters contained in the VisualML.

2.1. VisualML

VisualML is a simple procedure-based program
structure language that follows the rules of XML and is an
XML. It does not include any molecular simulation
specific statements and is a general-purpose language to
describe program structure; therefore it can be reused in
any other visual system requiring a program structure
language. It contains a minimal set of constructs for
describing a simulation’s construction. These include
three construct: the function list, the function, and the
parameter. The function list construct is a list of
functional components to be executed in sequential order.
The function construct corresponds to a functional
component; it must be defined in a VisualML library
description described below. Functions can contain other
functions as sub-functions. Sub-functions correspond to
functional components executed from within the function
corresponding to the parent function statement. Sub-
functions are listed in the order in which the parent
function references them with in the actual source code.

The number of sub-functions must correspond to that in
the VisualML library description. Each function may
have a zero or more parameter statements. The parameter
statement has a named attribute ‘type’ given in the
VisualML library description corresponding to a data
type. The parameter statement also has a named attribute
‘name’. The name is the name of the specific
instantiation of the data type and is used by the source to
request the value from the Code Executive. The order
and of parameters and their data types must correspond to
that in the VisualML library description for a statement.

In addition the VisualML can be used to describe the
functional components contained in a shared object
library. The library description is used to translate the
VisualML calls into the entry points into the shared object
library entry points. In addition it contains specific
functional component information such as the simulation
parameters that needs to be specified, and the number and
type of functional components that can be called by the
specified functional component. This description may be
replaced or expanded to correspond to any update or new
functionality with modifying any other tools or functional
components. This provides maximum extensibility and
reusability. With a modified description the Code
Executive will be able to use additional modules in new
or added to existing shared object libraries, whatever they
may be.

2.2. The Code Executive

The Code Executive will read in a VisualML
simulation description file and convert it into a parse tree.
The Code Executive executes the functional components
in the statement list at the top of the parse tree. The parse
sub-tree below that function is passed to the functional
component. The module may call the Code Executive
and pass it the parse sub-tree and the number of the sub-
function to execute (This is the method for executing sub-
statements, or calling user definable functional
components from with in a functional component). The
parse tree contains a parameter list for each function with
pointers to the memory of the corresponding instantiation
data type to be passed to the modules. The interpreter
maintains an array of pointers to point to each
instantiation of each data type. It is these pointers that are
pointed to in the parameter list of the parse tree. All
modules must check to see that the data types that they
are using have been allocated. The Code Executive is
also reusable in that it is independent on a specific set of
modules.

2.3. The Visual Simulator Development Environment

The Visual Simulator Development Environment
(VSDE) uses the library description, so it can be used to
visually build a simulation out of whatever modules are in
the various library descriptions. The VSDE is a graphical

editor for VisualML files. It does not have to be running
on the same platform as the Code Executive. The VSDE
has two interfaces, the novice interface and the advanced
interface. The novice VSDE displays the basic structure
of a program and shows the modules that the novice user
may change. At a specific changeable module, the GUI
will give the user the opportunity to select, from several
preset modules, the module that will be used at that point
in the simulation. The advanced VSDE has a set of
menus containing all the functional components in the
library descriptions. The main window contains the
simulator window in which the functional components are
displayed in their hierarchical order. A right click on the
function will display the parameters with their names, and
any data values that can be requested by the functional
components. The VSDE will get the information about
parameters and data from the library descriptions.

3. THE MOLECULAR DYNAMICS FUNCTIONAL
COMPONENTS

All module components will be constructed to meet
the standards enforced by the parser and interpreter. The
modules can then be reused in any VisualML simulator,
not just VisualXMD. Generic modules such as program
control, domain decomposition, integrators, and
visualization tools can be used in construction of a variety
of Visual languages. The modules may need modification
in order that they can be used with a system that is not
based on VisualML.

VisualXMD will be based on a library of routines
developed under CHSSI project: CCM-4. These libraries
will provide the parallelization and domain decomposition
for multiple dimensions. This library consists of
approximately 8,000 lines of code. VisualXMD will also
leverage the utility of Interdisciplinary Computing
Environment (ICE, formerly DICE), which is being
developed under several CHSSI programs.

The software suite, using a variety of potentials from
the simple to the chemically realistic, will provide a broad
range of capabilities and execution options that will
enable the effective and easy use of the tools by both the
novice and advanced researcher in molecular simulations.
and thoroughly tested modules

3.1. Functional Components

Functional Components need to have a C interface to
handle the casting of pointers from the parse tree to the
call parameter list. The scientific modules will be written
in FORTRAN 90 and the C interface and the library
description entries will be created and used for all of the
FORTRAN 90 modules. Now we will discuss the
different classes of modules to be implemented.

3.1.1. Control Components

There are only two types of control modules planned:
the conditional module and the loop module. The
conditional module will have two sub-statements. The
first sub-statement will be executed if the specified
conditions are met, otherwise, the second will be
executed. Loop modules will have only one sub-
statement, which can be a statement list. The loop
modules will iterate until the specified conditions are met.

3.1.2. Atom and Bulk Property Control Components

These modules will control specific properties of the
simulation. The bulk properties control modules will
control boundary conditions and simulation constants.
There will be a module that will handle a variety of
boundary conditions, based on the previous work on cell-
linked lists in CCM-4. These modules will be included in
the domain decomposition modules for ease of use.

3.1.3. Integrator Components

The integrator components will all integrate the
equations of motion, but they will have different orders
and some different properties. The Integrator modules
will include, at a minimum, a velocity Verlet integrator
and a higher-order integrator, such as an N order Adams-
Moulton Predictor-Corrector or Runge-Kutta 4th Order
integrator. Recently a component for a uniaxial
hugoniostat was developed. This method utilizes
modified equations of motion that constrain the system to
states that correspond to points on the shock Hugoniot
curve. Figure 1 provides a comparison of the shock
Hugoniot of a system evaluated using the Hugoniostat
method with that obtained from brute force non-
equilibrium molecular dynamics (NEMD) simulations of
a shocked system of Lennard-Jones particles. The
NEMD simulations require extensive computational
resources (cycles, processors and memory) in order to
accommodate the system size of the simulation; the
Hugoniostat method requires only a fraction of the
computational resources as the NEMD simulations

3.1.4. Domain Decomposition and Communication
Components

The domain decomposition components divide the
system up into cells and assign the cells to processors.
There is a uniform cell size domain decomposition
module. The cell decomposer will divide the system up
into multiple cells corresponding to a modified cell
linked-list described in W. Mattson and B. M. Rice,
Computer Physics Communications 119,135 (1999). The
domain decomposition component will create or modify a
communication structure for use by the communication
modules.

3.1.5. Potential Components

Several simple pair-additive and many-body
interaction potentials, including the Lennard-Jones, the
exponential-six, and the reactive Empirical Bond Order
(REBO) potentials for model energetic materials have
been implemented.

3.1.6. Property Monitoring Components

These components calculate specific properties of the
simulation or atoms, such as Kinetic Energy, Potential
Energy, Total Energy, Pressure, Temperature, Volume,
and Density.

3.2. Crystal Builder

The crystal builder consists of separate program that
generates Cartesian coordinates of a crystalline lattice
using user-specific space-group symmetries and fractional
coordinates of a molecule. The crystal builder has a
graphical user interface.

4. MOLECULAR PACKING

There are three main software components within the
scope of this project. Two are extensions from earlier
CHSSI CCM projects (DoD Planewave [CCM-1] and
VXMD [CCM-5]). The source code for the third
package, known as MOLPAK/WMIN, is a mix of non-
ANSI-standard Fortran 66 and Fortran 77 and currently
exists only in a serial version. Also, current versions of
MOLPAK/WMIN are not portable across computational
platforms.

The MOLPAK (MOLecular PAcKing) computer
program was designed to predict possible crystal
structures for small organic compounds. The basic
assumption is that of closest packing and MOLPAK
creates unit cells that have the smallest volumes per
molecule. One can think about a crystal structure in terms
of a central molecule surrounded by a coordination sphere
of other molecules related to the center by
crystallographic symmetry (space group) and the
dimensions of the unit cell. Currently, 29 coordination
geometries are used for a typical structure search and
code has been written for a total of 60 geometries. For
each of the coordination geometries, MOLPAK generates
from 7000-51000 hypothetical crystal structures from the
coordinates of a single molecule. The 25-500 most-dense
initial crystal structures then are subjected to lattice
energy minimization that optimizes the crystal unit cell
parameters and orientation and position of the molecule
within the unit cell. The energy minimization is space-
group symmetry restricted and performed with the
computer code WMIN, which models molecules and
crystals in terms of potential energy functions. The
refined structures are ranked according to energy with the

lowest energy structure taken as the best. In some cases,
a combination of density and energy are used to select the
best structure and a procedure that involves
intermolecular contacts is under development.
MOLPAK has been under development for approximately
fifteen years under the direction of Professor H. L.
Ammon, University of Maryland, and is currently
maintained by Professor Ammon. WMIN was written by
William R. Busing of Oak Ridge National Laboratory,
and published in 1981. To our knowledge, WMIN has not
been enhanced nor maintained by the Oak Ridge National
Laboratory.

DoD Planewave has its roots in a simple planewave
pseudopotential program written in 1992 at NRL to test
new ideas about the transformation of pseudopotentials
between different representations [Singh, et al. 1992;
Singh et al. 1993]. The code was extended and
generalized at NRL to test non-local density functionals
during the two years [Singh, 1993]. This was in support of
a Navy interest in ferroelectric perovskite materials for
SONAR applications. Parallelization of the code, and
extensions to make it general in terms of symmetry and
chemical composition as well as to add forces and
dynamics were started in 1996 with support from the
CHSSI program. DoD Planewave was the main
component of the CCM-1 (the other was ACRES). The
parallelization, generalization and documentation of DoD
Planewave was done between 1996 and 2000.

The software will allow ab initio crystal prediction
with quantum mechanical descriptions of forces to obtain
reliable densities and structures of materials of interest to
the DoD, including energetic materials. This software is
an important tool needed to unlock the fundamentals
required to relate crystal structure at the lattice level to
onset of initiation. This is of high importance to DoD in
light of the increasingly complex and harsh environments
in which energetic materials will have to perform in
current and future systems.

The crystal prediction software has two levels of
parallelism. The first and higher level addresses the most
computationally intensive portion of the problem: The
adequate sampling of orientation space through the
generation of crystals based on the orientation of a single
molecule. This level of parallelism is a simple replication
method where each processor group evaluates a single
configuration at a time. In the simple replication method,
each processor group communicates with the other
processor groups to adaptively partition the remaining
configurations, and to report the results of finished
configuration calculations. Initially, when there are many
configurations remaining to be evaluated, processor
groups will usually consist of a single processor and
adaptively merge into groups of multiple processors when
there are more processors than remaining configurations.
The replication method itself is simple to implement, but

the adaptive nature of both the partition of remaining
configurations and the processor groups increases the
HPC complexity for implementation. The second and
lower lever of parallelism is the decomposition of the
molecular mechanics for a single configuration across
multiple processors. The classical potential and
molecular mechanics/energy minimization steps of
MOLPAK/ROTPAK and WMIN will be parallelized by
domain decomposition within the VXMD framework
(CHSSI CCM-5), increasing the capabilities of both
VXMD and MOLPAK by making available all
permutations of there current capabilities to users.
Parallelization will be accomplished through explicit
standard message passing interfaces to MPI. DoD
Planewave is already parallelized over energy bands for a
single configuration but must be interfaced with
MOLPAK through VXMD to run simultaneous multiple
configurations.

5. CONCLUSIONS

The VisualML framework provides a simple
mechanism for assembling new and complex simulations
from standard components. The system is capable of a
wide variety of efficient and highly scalable simulations
necessary for energetics materials research using the
components developed under the CHSSI program. It is
also easily adaptable to new the technologies being
developed for more accurate and complete calculations of
the properties of energetic materials.

REFERENCES

 [1] K.Czarnecki, and U. Eisenecker, “Generative
Programming”, Addison-Wesley (2000).

[2] J.-B. Maillet, M. Mareschal, L. Soulard, R.
Ravelo, P. S. Lomdahl, T. C. Germann and B. L. Holian,
Phys. Rev. E 63, 016121 (2000).

[3] See online documentation at http://cst-
www.nrl.navy.mil/people/singh/planewave/v3.0/

[4] See online documentation at
http://www.arl.hpc.mil/ice/

[5] See the listing under National Center for
Supercomputing Applications, "HDF5 - A New
Generation of HDF", http://hdf.nsca.uiuc.edu/HDF5

[6] See online documentation at
http://xml.apache.org/ and http://www.xml.org

[7] Snir, Otto, Huss-Lederman, Walker, and
Dongarra, “MPI-The Complete Reference”, The MIT
Press (1998).

